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The kinetic theory is developed for the mass mixing of two incompressible immiscible fluids due to
Rayleigh-Taylor instability (as an example for turbulence in variable-density statistically inhomogeneous in-
compressible fluids). An expression is derived for the fine grain force in terms of the mass-density and velocity
fields. This expression enables the conversion of the Navier-Stokes equation into an exact explicit conservation
equation in phase space. The equation is a generalization, to the variable-density case, of the Lundgren
equation [T. S. Lundgren, Phys. Fluids 10, 969 (1967)]. The conserved quantity is the fine grain density-
velocity distribution (FGDVD). The fine grain mass-density and fluid velocity fields are the two lowest
moments of the FGDVD. The joint density-velocity probability density function (DVPDF) is the ensemble
average of the FGDVD. Using detailed numerical solutions of the Navier-Stokes equation, it is found that the
correlation between the acceleration and the FGDVD is weak. This result identifies a small parameter which
enables the derivation, by controlled approximations, of closed equations for the DVPDFs. The lowest order
yields the mean-field approximation. It is shown by a numerical solution of the closed kinetic equation in the
mean-field approximation that it properly describes the time evolution of the system for periods shorter than

the relaxation time. Closure schemes beyond the mean field are discussed.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) occurs when a light
fluid supports a heavier one against gravity or pushes it with
a constant acceleration [1-3]. The phenomenon occurs in a
large variety of natural and laboratory systems (e.g., super-
novae, e.g., inertial confinement fusion pellet implosions).
Initially, random perturbations at the interface grow expo-
nentially in time. In the nonlinear stage of the instability,
round “bubbles” of light fluid enter the heavy fluid and nar-
row “spikes” of heavy fluid penetrate the lighter one. Later
on, the “bubbles-spikes” structure breaks down, the interface
between the components becomes distorted [4-9], and the
fluid volume becomes very fragmented. This is the mass
mixing stage. Eventually, a transition (mixing transition) oc-
curs to a new state where molecular mixing becomes the
dominant effect [10].

The late state of the process, even before the mixing tran-
sition, represents an example of variable density, inhomoge-
neous turbulence in incompressible fluids. This is the subject
of the present work. In particular, the purpose is to develop
the kinetic theoretical approach to this class of systems.

In a pioneering work [11], Lundgren has defined a hierar-
chy of velocity distribution functions for inhomogeneous tur-
bulence (but with homogeneous mass density). The one-
point distribution, f,, was defined so that f,(r,,v,,)d’v, is
the probability that the velocity at r; at time ¢ is in the ele-
ment d°v, about v,. The n point distributions were defined in
a similar way so that f,(r,vy,....r,,v,.0)d°vy,...,d°v, is
the joint probability that, for allr;, j=1,...,n, the velocity at
r; at time 7 is in the elements d*v ; about v;. These functions
are also named velocity probability density functions (veloc-
ity PDFs). It was shown in Ref. [11] that the distributions
obey a hierarchy of equations which is formally similar to
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the Bogolyubov-Born-Green-Kirwood-Yvon (BBGKY) hier-
archy of statistical mechanics of Coulomb plasmas [12-17]
(except that the distributions, f,,, represent the probability for
fluid velocity rather than ions and electrons velocity). Clo-
sures of the hierarchy were suggested in Refs. [18,19].

The kinetic approach, with closure at the level of the ki-
netic equation for the one-point distribution, was further de-
veloped and extensively investigated and applied by Pope
[20]. In the kinetic equation, effects beyond the mean-field
approximation were modeled by terms representing drag and
diffusion in velocity space, in analogy to the Fokker-Planck
form of the collision integral in the kinetic theory of par-
ticles. The modeling was in the choice of the drag and dif-
fusion coefficients as functionals of the one-point distribu-
tion and the turbulent dissipation and in the model equation
for the turbulent dissipation. It was shown that the three low-
est moments of this class of kinetic models [21,22] generate
many successful Reynolds stress models of fluid turbulence
[23].

In the present work, Lundgren’s kinetic approach is ex-
tended to variable-density systems. The extension requires
the proper generalization of the definition of velocity distri-
bution, the derivation of an expression for the spacial distri-
bution of the force in terms of the spacial distribution of
mass density and velocity, and the conversion of the Euler
equation to a conservation equation in phase space. In addi-
tion, it requires the identification of a small parameter that
enables the reduction, by controlled approximations, of the
ensemble average of the fine grain phase space conservation
equation to closed kinetic equations.

The structure of the paper is as follows. The equations
which govern the time evolution of mass mixing of two in-
compressible immiscible fluids due to Rayleigh-Taylor insta-
bility (e.g., [2,3]) are described in Sec. II. This is our specific
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example for variable-density inhomogeneous turbulence in
incompressible fluids. In Sec. III, an exact expression is de-
rived for the fine grain force in terms of density and velocity
fields and the effect of density variation is analyzed. The fine
grain density-velocity distributions (FGDVD) are defined in
Sec. IV A and an exact, explicit equation for their time evo-
lution is presented. The average of the FGDVD is the joint
velocity-density probability density function (DVPDF) and
the ensemble average of the equation is an equation for the
DVPDFE. These equations are presented in Sec. IV B. Due to
nonlinearity of the fine grain equation, the ensemble-
averaged equation includes terms which are not expressible
in terms of the DVPDF alone. An approximation is needed
which leads to closure of the equation. The search for the
small parameter is presented in Sec. V. In Sec. V A, analysis
is presented based on detailed numerical solution of the Eu-
ler equations of the time evolution of the DVPDFs. It is
found that the statistics of the velocity is not Gaussian. This
is an indication that, indeed, a kinetic theory is required for
the description of RTI mixing. In Sec. V B, it is shown that
the RTI mixing system may be considered as a weakly
coupled system. The lowest order of the approximations jus-
tified by the weak coupling is presented and analyzed in Sec.
VI A. In Sec. VIB, it is shown that this closure properly
describes the short time evolution of the system. Discussion
of the results is presented in Sec. VII.

II. GOVERNING EQUATIONS

This section is devoted to the detailed description of the
theoretical framework of the present paper. For definiteness,
we consider planar geometry. The system of RTI mixing is
initiated with the heavy, incompressible fluid of density p"
occupying the upper half space, z>0, and the lighter, incom-
pressible, fluid of density p® <p" occupying the lowest
half.

At hydrostatic equilibrium, the pressure gradient balances
gravitation, i.e., —Ilﬁ—‘ipz g. This state is unstable, random per-
turbations at the interface will grow, and eventually will in-
duce a mixing of the two fluids.

We follow a standard approach to RTI mixing in which
the pressure p(r,t), velocity u(r,z), and density p(r,z) are
assumed to be periodic in the x,y coordinates and the system
is contained between two planes at z= = H, where the pres-
sure gradient balances gravitation [ﬁp]zzyz—p(')gf and
[plen=—pPg2.

In the treatment, we shall use a component indicator func-
tion X¥(r,7) which is 1 within the volume occupied by the s
component (s=1 for the heavy fluid and 2 for the light) and
0 elsewhere. In terms of this function, the mass density is
written as

p(r,1) =XV (r,0)p" + X (r,1)p? (1)

and the mass conservation equation reduces to the a pair of
equations (for s=1,2) [24]

<i+u-i>x®:o. 2)

The Euler equation is
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—u+u-—u|=F,
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where
J .
F=-—p-pgi+7 (4)
ar

and 7 is the force due to interfacial interaction. In treating
the late stage of the RTI problem, it is not necessary to in-
clude a molecular viscosity term in the equation, since much
stronger dissipation mechanisms occur in the averaged equa-
tions. [For the possible inclusion of molecular viscosity in
the momentum equation and molecular diffusivity, between
miscible fluids, in the mass conservation equation (2), see
Appendix Al].

Incompressibility imposes a relation between the force
and both the velocity and density fields. To find this relation,
it is necessary to solve the differential equation

d (F 1

with the boundary conditions at z— * oo, together with the
requirement that p and # are periodical in the x,y plane. S*
in the source term of Eq. (5) is

St(r) = p(r)% . <u . %u) :p[(iu)(%u)]. (6)

The expression (%u):(j’ru)z(%uj)(aijui) (summation con-
vention) in the second equality of Eq. (6) results from the
first equality with the help of the incompressibility condition
a( 0 N 0d J J
gi(uj,;_jui)=(3iuj)5'4i+P”j§jEi”iz(;‘.uj)(gui)-

The solution of Eq. (5) for the force F(r,7) in terms of
velocity u(r, ) and density p(r,) enables the elimination of
F from the Euler equation (3) which yields an explicit closed
equation for the time evolution of the fine grain fluid vari-
ables u and p. In turn, this equation may be converted to an
equation for the probability density function of u and p,
which is analogous to the Klimontovich equation in nonequi-
librium statistical mechanics of gases and plasmas
[13,15-17] and can serve as a starting point for the deriva-
tion of kinetic equations for RTI mixing and in general for
turbulence in variable-density incompressible, statistically
inhomogeneous fluids. The next two sections are devoted to
the derivation of the equations for the time evolution of the
fine grain fluid variables and their probability density func-
tions.

III. FINE GRAIN FORCE

In this section, an expression for the force F(r,7) in terms
of velocity u(r,7) and density p(r,?) is derived by solving
Eq. (5). The effect of density fluctuations on the acceleration
is analyzed.

It is more convenient to solve the integral form of the
equation. Explicitly, the equation
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e el o (e )
T 4m ar|r—r’'| plr’) o) o "
+ p(i,)<%p(r’)) ~(F+pg2)H

- (p - %(p(” + 9(2)))g2 (7)

is equivalent to Eq. (5) together with the boundary condi-
tions. Indeed, taking the divergence of Eq. (7), using the
property fr pam (r—r’) [25], we get back Eq. (5).
To check that tLe boundary conditions are obeyed notice that
the integral in Eq. (7) has the asymptotic +3 Lof[pM=p@] as
z— + H.

The solution of Eq. (7) is obtained by moving the term
which involves F to the left-hand side and inverting the op-
erator {&(r-r : " o(r')]}. The result is

e

r') ?
F = F’ + F&P + F**. (8)

The three forces in this formula are

1 X
Fr=— (p— G pm))zgz, )

Jd
P f Gr,r")s%(x")dr ', (10)
T
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J
Fw = — a_J G(r,r')S*(r"dr', (11)
T

with

! .
sy = (! + p?)gz- (12)

px') or'”

The Kernel in the integrals is,

G(r,r') = f Go(r — r”){ S -r)- 0" r")

. ‘}dSI'"

— f GO(I‘ _ ru)[(sii(ru _ I") + Q(r”,r’)]_1d3r”

+ f Q(rrr,rm)Q(rm’rr)d3 Mg

(13)
where
Q(rr')—i< p(r>) LGy (14)
0\ 7 p
and
1
Gy(r-r") = 47-r|r rk (15)

To check the solution, note that G(r,r’) is the Green’s func-

tion of the operator p; EE’ indeed

1

T ! J ii 3 MY "o
o p()a 0= Har ar” (a#’) 0r]4w|r—r”|{§(r r') - 0("x")

+ f Q(I‘",I'W)Q(I‘W,I")dsl'm _

4o ‘:|d3l'"

— f [_ 53(1, _ l'") _ Q(l‘,l‘”)]|: 53(1_" _ I") _ Q(I‘”,I‘,) + f Q(r",r'”)Q(r”’,r’)d3r"’ e d3r//

— { [_ 53(1' _ 1‘,) + Q(l‘,l") _ J Q(l‘,l‘"’)Q(l"",l")d3l‘m 4 :|

+ {— O(r,x") +f o(r,r")o(r", v )d’r" - }} =—8(r-r). (16)

With this result, it is readily seen that operating with % -1 on F of Eq. (8), one gets the right-hand side of Eq. (5). The solution
may be further simplified. Using the methods of Ref. [24], it may be shown that integrals involving gradients of functions of

the mass density may be simplified in the form

%é[p(r’,t)] fe Ddr = {
r

&p") - &(p?)
( (1) _

o) }J p(e',0) - f(x' . (17)
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As aresult, in the expression for F, we may replace Q by the
function Q defined as
1
nf 2
~ p(z) J
or',r)= o0 o 7p(r’) —Go(r T).
(18)

In the limit of homogeneous density p(r)=pV=p@=p,, the
solution (8) reduces to the well-known result [26]

J
Fozf &—Go(r,r’)Sg(r’)cPr', (19)
r

J J
””(T)(T)

Relation (19) is a bi-linear relation between the force and the
velocity field. As is clear from the form of the Green’s func-
tion [Eq. (13)], density variation introduces a strong nonlin-
ear dependence of the force on the density gradient.

We proceed in analyzing the physical origin of the various
terms in relation (8). To this end, we rewrite the Green’s
function (13) as

where

—G(r ry) = E T, (r,ry), (20)
n=0

where the terms T, are defined by the differential recursive
relation

J
TO = _GO(r’rN)’ (21)
or

J
P T,,,(I',I’N) =

- Sn(r’ rN) 5 (22)
or

Su(r,ry) = ()( p(l‘)) T, i(r,ry). (23)

The first term in the sum (20) is the “direct” pressure gradi-
ent described by the “bare” Green’s function for the case of a
point source in uniform mass density TO(r,rN)=£GO(r,rN)

a—’i(ﬁh_l—w) [i.e., the solution of %-To(r,rN)=53(r—rN)].
The second contribution, T, is the correction due to second-
ary source, generated by the interaction of the direct pressure
with a dens1ty fluctuation [i.e., the solution of < o Th(r,ry)

== p(r) arp(r) -To(r,ry)]. In general, the n order correction
is due to the source generated by the interaction of the n
—1 order pressure with the density fluctuations. Equation
(20) represents the sum of the bare field and fields due to the
virtual sources, S,,.

The various terms in relation (8) may be described as
follows: F? is the buoyancy force. F¢ represents the force
due to the “secondary source” S¢” generated by the interac-
tion of the gravitational force with density variation. F*? rep-
resents the force due to the source S“. This is the only term
which survives in the absence of density variation and grav-
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ity. The effect of density variation on F“? is in the “dressing”
of the bare Green’s function G, by the function [I+Q]!
which represents the sum of the contributions of secondary
and higher-order sources due to density fluctuations.

Another consequence of relation (8) is that gravitation and
density variation do not alter the average acceleration. To see
this result, note that the acceleration aziF may be decom-
posed in the form

a=a)+Aa, (24)

where the correction term is

Aa= %F” . Ilngp- {ﬁ?“r r)p(r')
_ﬁ—iGO(r,r’)} S (25)

The correction Aa vanishes at z— = o; also by Egs. (15) and
(16) we get

J
—-Aa=0. (26)
Jr

By Eq. (26) together with Gauss theorem, we see that the
average of the correction term vanishes

(Aay=0 (27)

and

(a)=(a), (28)

i.e., the average acceleration is not affected neither by grav-
ity nor by density fluctuations. Still, correlations in the sys-
tem (e.g., (ua)) are affected by density fluctuations.

In Egs. (27) and (28), the angular brackets (---) denote
ensemble average. Our system is statistically one-
dimensional [20], i.e., it is statistically invariant to transla-
tion in the (x,y) plane and to rotation around the z axis. In
such systems, the ensemble average is equivalent to the av-
erage over the (x,y) plane in a single realization, i.e.,

1 L L
(or=s | ax] asteey 29)
-L -L

where L is the transverse periodicity length (In the simula-
tion which is only in two dimensions, —f Ldx [t dy is re-
placed by Lf’“ dy.)

Equation (24) may be further interpreted in analogy with
the electric field in macroscopic media (see, for example,
Sec. 1.4 in [25]) where a, is analogous to the electric field, a
is analogous to the electric displacement, and Aa is analo-
gous to the contribution of the sources within the medium.
Like the electric field and electric displacement, both a and
a, obey the same equation %a:%-aoziSu.
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IV. EQUATIONS FOR THE FINE GRAIN DISTRIBUTION
AND THE DENSITY-VELOCITY PROBABILITY
DENSITY FUNCTION

A. Equations for the fine grain distribution

The detailed information about the flow in incompressible
RTI system is in the velocity and mass density fields
u(r,?),p(r,t). This information may also be incorporated
into a pair of the FGDVD defined by

F(ls)(I‘,V,l) = X(V)(r,[) 53[u(r,t) -v]. (30)

Indeed, these functions generate the fields through the rela-
tions

2
u=, VF(ls)dSV, (31)
s=1
X = f FYdy, (32)
2
p=2 p" f Fody, (33)
s=1
and also

slp

The right-hand side in the incompressibility equation (5) and

the function Q may also be expressed in terms of the
FGDVDs as

S”() E (V —) F(]S)d3v (35)

p(l)

~ In F
or',r)=\—m —an
(p" = p?)

2
9 N 9
X( 52" )J FPav' |- —Go(r'x).
Jr Vol Jr

With these relations, Eqgs. (8), (24), and (25) for the force and
the acceleration may be expressed in terms of p", p@, and
the FGDVD.

In order to simplify the evaluation of products of fluid
variables at different positions, we define the multipoint
FGDVDs as

(

and

FS(r,,v,.1).
(36)

F(Sl"”’j")(rl,vl, ,I‘n,Vn,t) = F(lxl)(rl,vl,t) e

n

To derive the equations for the time evolution of the fine
grain distribution, F' (f), as defined in Eq. (30), one starts by
using the Euler Eq. (3) by which the time derivative of the
delta function is
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J J Jd
—[&(u - =—u-—&u-
&t[ (w=v] &tu Ju @-v)

N 9 Sy
—( u aru+a> ﬂué(u v). (37)

Using the chain rule for derivatives u- ar“ 5%(u V)
=u- —63(u v), in Eq. (37) multiplying it by X", one gets

J J d
X(S)(a—t +u- 5) Su-v)=a- Q[X(s)g(u -v)].
(38)

Next we multiply Eq. (2) by [8*(u—v)] and add the result to
Eq. (38). This process yields the equation for the FGDVD

d d d d
—F r,v,t)=| —+v-—+a(r,t) - — F r,v,t)=0.
U )Lt op T A0 o FEr D)

(39)
For the manipulations below, we need a more efficient index-

ing of the variables. We use the shorthand X; for phase space
variables (including the component index s) ie.,

X, =5,r,V.. (40)

J=Rp Y
For example, the fine grain function F(]S-/)(rj,vj,t) will be
denoted by F(j) and integration over phase space is denoted
by

sj=1

d*vd°r;. (41)

With this notation, Eq. (39) reads

d J J J
—F(1 — - — ) -— [F(1)=0. (42
ar (D= {at'fvl ﬁr+a(r1 ) 3V1] (1) (42)

Equation (42) immediately yields also an equation for F,,,

d
EFH(I,... =[—+2<1 o,

j=1
+a(r; t) — ]F,l(l .,n)=0. (43)

Equation (42) is analogous to the Klimontovich equation in
nonequilibrium statistical mechanics of gases and plasmas
[13,15-17]. Together with the expression for a, it constitutes
an exact, explicit, and closed pair of equations for F(I‘Y) (s
=1,2). No statistical averaging is involved.

B. Equation for the density-velocity probability density
function

The ensemble average of Eq. (42) is

|:%+V.£:|<F1(1)>=—%-(a(l’,l‘)Fl(l». (44)

The last equation is an unclosed equation for, f,(1) defined
by
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[ =(F (1)) =X, nSulr,) -v,]), (45)

which is the probability of having a point within the compo-
nent (s;) with velocity v, at position r. In practice, it may be
obtained from the experimental measurements of the velocity
and mass density fields (e.g., [27]) or from solutions of the
time evolution of the ensemble of systems by counting all
the realizations in which the point ry is within the component
s and the velocity u(r;,7) equals v, and then dividing by the
total number of realizations. We shall call this function the
one-point DVPDF. The normalization of f; is such that

JflXm f EX‘)(rt) dr=V,
s=1

where V is the volume which is occupied by system

With definition (45), the combination pMAY(r;,v,,7)
+p27 (e, v,,0=(p(r;,0)&u(r;,))=v,]) coincides with
the probability density function suggested by Polyakov [28]
for the description of turbulence. For the case of constant
density, this definition coincides with the velocity distribu-
tion, (&°[u(r,,7)—v,]), suggested by Lundgren [11].

Using the decomposition (24) and the explicit form of a
in terms of F,, we rewrite Eq. (44) in the form

|:(9i+vl J :|f](1)=_JdXZVO(l’Z)fZ(l’Z)
t ar

_6_1 (Aa(ry,n)F(1)), (46)

where the operator V|, is defined by

Voli.j) = Qz(])( Go(rur))

QG)=v;- % (47)

The two-point DVPDF is
f2(1,2) = (F5(1,2))
and in general
Full,oon) =(Fy(1,...,n)).

The set of coupled equations for fi, f5,...,
(43), is

obtained from Eq.
i - 0
—+ T L.,
P % ar, Il n)

== | dX, VoG + V(1. .n+ 1)
Jj=1

—2 ——-(Ba(r,0F,(1, ... .n). (48)

J=1 07
In the set of Egs. (48), only the last term on the right-hand
side represents the effect of gravity and density variation.
Without this term, we are left with the hierarchy of equations
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derived by Landgren [11] for turbulence with constant den-
sity.

These equations are also formally similar to the equations
which are used as a starting point for the kinetic theory of
plasmas (see, for example, Appendix A in Ref. [17]). The
difference is in the interaction operator V, which in the
plasma case takes the form

J
r))- v (49)

aG(
w— I'
Por; ° .

VO Plasma(h])

where w), is the plasma frequency

_ 2 |4ange?
©p= )

(e is the electron charge and m'? is the electron or ion mass:
s;=1 for electron and s;=2 for 10ns).

The dependence of the interaction operator on the charac-
teristic time in the plasma ' enables a systematic analysis
of the relative size of the different terms in the equations.
This analysis justifies approximations which lead to closure
of the kinetic equations (e.g., Bogolubov’s hierarchy of time
scales [12]). In the fluid turbulence case, the interaction op-
erator V,, and in particular () does not depend on physical
constants. Therefore, we could not adapt the systematic treat-
ment of plasma kinetic theory to our case. Instead, we have
examined the relative size of terms in the kinetic equations
by using the DVPDF compiled from numerical solutions of
the Euler equations. This analysis is described in the next
section.

V. PROPERTIES OF THE KINETIC EQUATIONS
AND THE VPDF

In the following two sections, we shall analyze results
compiled from two-dimensional solutions of the Euler equa-
tion using the hydro code LEEOR2D. This code was used in
the past, in numerous works, for the analysis of the RTI
mixing (e.g., [29]) and for the determination of the rate of
expansion of the mixing zone in the self-similar regime. In
the present work, the same fine grain solutions of pressure
density and velocity fields will be used for the analysis of the
properties of the DVPDFs.

The simulation was initiated in a state closed to an hydro-
static equilibrium with the heavy fluid, at rest, filling the
upper half of the volume [z> 8z(y)] with fluid 1 with density

2
po(1)=pMe=8Coma?~ p(V and the light fluid 2, also at rest,

filling the lower half with density py(2)=p®e & Cooundt ~ p.
The deviation of the interface from z=0, 6z, was

=320 l
5(y) =001 S ¢, cos(%),

=160

where ¢; was chosen randomly for each mode as +1 or —1.
Incompressibility was imposed by using an equation of state,
which determined the pressure p from the density p sepa-
rately for fluid s=1 or s=2 by p=C2,  (p—p") with a very
large value of sound velocity Cyung (see Sec. 3.6 in Ref.

[35)), i.e., c2 H <1. The gravitational acceleration in the
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t=14.8 sec

1.5

-0.5
40

-40 -4

z (cm)
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FIG. 1. (Color online) Contours of the axial DVPDFs f(!) and
f? at t=14.8 s (legend corresponds to lines on walls).

simulation was 1 cm s~2 and the initial Atwood number, A

= ’%‘%, was 0.5 (natural densities p("'=3, p@=1). The di-
pep

mensions of the simulation region were L=200 cm by 2H

=62.5 cm. The grid sizes were N,=1280 and N,=400. Some

more details of the numerical scheme and convergence tests

are presented in Appendix B.

A. Density-velocity probability density functions

The one-point DVPDF in a statistically one-dimensional
(ID) system has the following property:

£y =£zv.0). (50)
We define the axial DVPDF for the axial velocity by
f(s)(z,vz,t) = ff(f)(z,v,t)dvydvx =(xW Su,—v,)).
(51

The averaged axial quantities are obtained as moments of the
distribution

(XWulty = f v (zv,0)dv.. (52)

Another quantity which is of interest for mixing due to RTI,
h, the extension of the mixing zone, may be evaluated
from the DVPDF as the range in  which
2Dz v, 0dv ] 7. Pz, 0], 1)dv]] does not vanish.

Figures 1 and 2 show the time evolution of the axial
DVPDFs f% and the three lowest moments
(XY, <X(S)uz) , (X“)u?), compiled from two-dimensional solu-
tions of the Euler equation. To further characterize the axial
DVPDFs, we have looked at cuts of constant z. Figures 3 and
4 show cuts of the distribution. To these lines, we have added
lines of the functions
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t=23.8 sec
—= [ fVgy
— @y
1.5 . _J' f(”VZde
Yo T T @ _dv
1 z z
- fmvidv
- - -]y
0.5
0
-0.5
40 .
20 4
0 2
0
20 S
z (cm) -40 -4 v (cm/sec)

FIG. 2. (Color online) Same as Fig. 1 at t=23.8.

(5) (5)
pa
ff%E(Z’Uz’t) = (_ 27

112
) P, - U2 ),

(53)

which represent a state of local “thermodynamic equilib-
rium” around the local averaged velocity, UY(z,1)
E<X+%§X(S)uz),2 with a local “temperature” —%S)(z.,t)
=—pW[(XWu2)—(X)(U®)?] and local mass density
p¥a(z,1), where ol = (X)),

From these figures, it is clear that the distributions are
closed but do not entirely coincide with the distributions ex-
pected at LTE. This means that a one-point fluid theory or
model (i.e., equations for the three lowest moments, p(s)a(s),
UY, 79) cannot capture all the effects involved in RTI mix-
ing. The deviation of the DVPDFs from Gaussian empa-

t= 15.8 sec

(1)
fire

--- DNs "

0.5~ s _{2
‘ LTE

-DNS{?

0.4

i -

0.3

0.2

0.1

o ——

z (cm) -10 -10

v (cm/sec)

FIG. 3. (Color online) Comparison between the axial DVPDF,
f obtained directly from detailed solution of the Euler equation
(simulation), and the LTE function ﬂlf%E

p¥Wal (s) (s) (5)y2/5 (s)
E(_z:#s))l/zep Pa U277 ) gt 1=15.8 s.
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t= 27.8 sec

044 _ f(z)

-

0.3

0.2

L em— ————

z (cm) -20 10

Vv (cm/sec)

FIG. 4. (Color online) Same as Fig. 3, at r=27.8 s.

thizes the need for a kinetic theoretical approach of the RTI
mixing process. The next section is devoted to the identifi-
cation of a small parameter which enables the derivation of
closed kinetic equations.

B. RTI mixing as a weakly coupled statistical system
Adding (a)(F(ls)) to both sides of Eq. (44), we get

v L 2 |t

- L (- @O S -v)). (54)
ov

Integrating over dv,dv, and using the property ﬁ>(r v,1)
_Jdl)(Z v,1), {a)= z(a) we get

{% +v.—+(a )—]f(S)(z,vz,t)

-- i<[az @)X v, (55)
v,

The relative sizes of the terms in this equation are analyzed
by using results compiled from the detailed solutions of the
Euler equations. The DVPDFs, %, and (-—pX ©S(u,~v.))
are evaluated directly from the velocity, dens1ty, and pressure
fields. Terms which contain the probability density function
of the interfacial interaction (lan(S)é(uZ—vz» are evaluated
by velocity integral of Eq. (55), e.g.,

o J
= j [ P +v a—]fﬁ)(z,v;,t)dv; - gﬂs)(z,vz,t).

(56)

Figures 5 and 6 show that for the system under consider-
ation, the two terms in the flux on the right-hand side of Eq.
(55) are very close to each other, i.e.,
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t= 15.8 sec
- <FM g >
-3 z
x 10 ‘ - -<F(1) ><aZ>
A
20 ;g ----- <FPa >
A
15 Y <F(2)>< a>

-10 -10

z(cm) v (cm/sec)
FIG. 5. (Color online) Cuts of <p 37p+g— X ‘)ﬁ(u -v,)) and

(Gp+g—m)XWolu.~v,)) at =158 s.

p oz

([a, - {(a)]X¥(u, - v.))
(a XX (u, - v.))
This is an indication of the weak correlation between the

acceleration and the FGDVD. This property will be utilized
for approximations in the theory.

<. (57)

VI. CLOSURE

The next two sections will be devoted to the closure prob-
lem. In Sec. VI A, we will analyze the lowest-order approxi-
mation allowed by inequality (57) and discuss possible
higher-order approximations. Section VI B will be devoted
to the direct testing of the lowest-order approximation.

A. Mean-field approximation and beyond

Neglecting the right-hand side of Eq. (55), one is left with
a closed equation in which the only force is the mean field

t= 27.8 sec
- <FM g >
-3 z
x10 - -<F(1) ><aZ>
20 S TR S S R <F®@ a>
15 "l <FPsca >

n
i
10 '\
I}
i)
Py

-20 -10

z (cm) v (cm/sec)

FIG. 6. (Color online) Same as Fig. 5, at r=27.8 s.
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(a). Also from the average of Eq. (3) divided by p, since
%(u)zO, we get

N )
a)=17| —u)|.
=1 L)
Therefore, the approximate closed kinetic equation is

( f zf( (v..2' t)dv) Fz0,.0)
gz

= (. (58)

d
—+v—
Jt 0z

This is the lowest order of the approximations justified by
the inequality (57).

The right-hand side of Eq. (54) represents all the effects
beyond the mean field which are neglected in Eq. (58). To
make the connection to Eq. (46) and the general set of
coupled Egs. (48), we apply the cluster expansion to the
multiple point functions, e.g.,

f(1,2) =f1(1)f1(2) + g5(1,2),

f3(1,2,3) = fi(Df1(2)f1(3) + £1(1)g2(2,3) + f1(2)g(1.,3)
+£1(3)g2(1,2) + g5(1,2,3) (59)
(this may be viewed as the definition of the irreducible cor-
relations g,, g3, etc.). With this definition, the term
JdX,Vo(1,2)f5(1,2) splits into the mean-field term and the
correlated term and Eq. (46) takes the form

( 2 v?f(’/)(vz’,z’,t)dvf)fi f1(1)
Z “] ov

d

—+vy
ot

(?1'1

fdxzvo(l 2)g,(1,2) = — (Aa(rl,t)F (1)). (60)

As mentioned before, due to the nonlinearity of Aa(r;,?) in
p, the term ﬁvi](Aa(rl,t)F (1)) introduces a coupling to all
multipoint functions. The weakness of coupling observed in
Fig. 5 [i.e., inequality (57)] justifies the neglect of the right-
hand side of Eq. (60) which includes both the effect of two
point correlations in the absence of density variation
[g,(1,2)] and the effect of gravity and density variation
(Aa). The next section will be devoted to testing the lowest-
order approximation.

B. Testing the mean-field approximation

In order to test the capacity of the closed kinetic equation
in the mean-field approximation (and to prepare a tool to test
other possible kinetic models), we have constructed a com-
puter program which solves kinetic equations of the form

Sz, 0= ;zrz(ﬂ 0,2 =2 L, (f,v,,2) (in Eq. (58),

I=v Y and T,={7 /" v2[ﬂ1)(z v 0+ (z,v,,0]dv ).
The program solves the kinetic equations by flux corrected
transport algorithm [30,31].

In the test of Eq. (58), the DVPDFs
f“)(z,vz,t) ,ﬂz)(z,vz,t) at r=20 s compiled from the detailed
numerical solution of the Euler equation were used as initial
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——DNS at t=20 sec

' DNS at t=21 sec
/ - = MFA at t=21 sec o
WM\ - - -free streaming at t=21 sec| |-

XMy cm/sec

0 ’c"> 1b 15
FIG. 7. (Color online) Test of the mean-field approximation.

conditions, which were than propagated, by solving Eq. (58)
for 1 s (in 25 substeps) to generate the DVPDFs at r=21.

In Figs. 7 and 8, the black solid line denote z profiles of
the first moment of the DVPDF (X“u,)=[v,f)dv, at time
t=20 s, compiled from detailed numerical solutions of the
Euler equation. The green dotted-dashed lines denote the first
moment of the DVPDF at time t=21 s obtained by the so-
lution of the kinetic equation (58). The magenta dotted lines
denote the first moment of the DVPDF at =21 compiled
from the detailed numerical solutions of the Euler equation.
The blue dashed lines denote the first moment of the DVPDF
at time =21 s obtained by the solution of the kinetic free
streaming equation [%+v8—‘1]}‘<“)(z,vz,t) =0.

From these figures, we see that the short time evolution
(i.e., for Ar=1 s) by the kinetic equations in the mean-field
approximation is in agreement with the averages of a de-
tailed numerical solution of the Euler equation. Note that in
this period of time, the size of the mixing zone was increased
by about 1 cm.

The disagreement of the dashed blue lines with the ma-
genta dotted lines shows that the correct short-time evolution
cannot be trivially obtained by the free streaming term alone,
i.e., the equation [g +va—dzlf(s)(z,v ,1)=0 does not produce the
correct evolution even for very short times. This is expected
in light of the fact that [as can be seen by integration of Eq.
(58) over velocities and summation over s=1,2] the mean
force term is necessary in order to maintain incompressibil-

ity.

0.25F
0.2r
o
(0]
2
€ 0.15¢
o
5
& 01p
> i
0,05 4’| —DNS at t=20 sec i
: e - DNS att=21 sec %
L . N4 == MFAatt=21 sec \\
Op "+ | - - -free streaming at t=21
& K ree streaming a sec
N “'\. U]
0,054 i i i i i
—%0 -15  -10 -5 0 5 10 15

z (cm)

FIG. 8. (Color online) Test of the mean-field approximation.
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—>—A/dy=2-4

—%—\/dy=4-8

,_ —&—)/dy=8-16
by | —o—A/dy=16-32

normalized width of mixing zone

gIZ/L

FIG. 9. (Color online) Resolution convergence test.

VII. SUMMARY AND DISCUSSION

As is demonstrated in Figs. 3 and 4, the statistics of fluid
velocity is not Gaussian. Clearly, not all the effects involved
in the RTI mixing are captured by Reynolds average Navier
Stokes (RANS) equations for the averaged density, velocity,
and energy (or (XV), (u.X")), and <qu(S))). Closure of the
equations by controlled approximations requires equations
for higher moments (e.g., kurtosis and flatness [20,32,33]) or
equations for the DVPDFs (which contain the information
about all moments). This is the approach taken in the present
work. Specifically, we have adapted Lundgren’s kinetic the-
oretical approach [11].

The first step in the derivation was the elimination of the
pressure (or force) from the fine grain Euler equation by
solving the incompressibility condition. The solution [Eq.
(8)] relates the force to the velocity and mass density. The
combined effect of gravity and density variation introduces
two forces: the buoyancy force F? defined in Eq. (9) and F#?
defined in Eq. (10). The latter is that part of buoyancy force
which is determined by the interaction of gravity with the
whole density field. In addition, the effect of density varia-
tion modifies the nature of the force due to eddies. This is
manifested in Eq. (11) by the replacement of the Coulomb
Green’s function Gy(r;,r,)= ﬁr\rzl_rll which governs the pres-
sure (or force) in the case of constant density by a dressed
Green’s function G(r,r")={[Gyr-r")[&x"-r")
+0(r",r")]"'d’r"}. The function Q(r”,r’) represents the sec-
ondary source due to interaction of the bare pressure with
density fluctuations.

It is plausible that the dressing of the Green’s function
effectively screens the source, truncates the range of interac-
tion in the system, and is the origin of the weakness of cou-
pling observed in Fig. 5. This, in turn, is a possible explana-
tion of the capacity of the mean-field approximation in
governing the short period time-evolution (Figs. 7 and 8).

The screening assumption reverts the conclusion of
Batchelor and Proudman about correlations in constant den-
sity turbulence [34] which say: “The fallacy of the old as-
sumption of exponentially small (large separation velocity)
cumulants can be ascribed to the action of pressure forces
which are local in their effect but which have values deter-
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FIG. 10. (Color online) Mode statistics convergence test.

mined instantaneously by the whole velocity fields.”

To test the screening assumption, one can use a numerical
solution of the Euler equation with an additional perturbing
force of the form sp(r)ﬁ %m The incompressibility con-
dition in this case is as in Eq. (5) but with an additional
source term of the form —sﬁ & (r-r,). The difference be-
tween the pressure (or acceleration) in such a run and a ref-
erence run with =0 reflects the response of the system to
the perturbing force. In particular, a pressure difference
which falls off faster than \r—1r0| (which is expected in the case
of constant density) would indicate a screening of the per-
turbing force due to density variation, in contrast with the
constant density case analyzed by Batchelor and Proudman
[34]. This test requires numerical runs with rich statistics, a
task which is left for a future work.

To save computer resources, all the numerical simulations
in the present work where limited to two-dimensional runs.
We believe that the main conclusions taken from the numeri-
cal runs (i.e., the non-Gaussian statistics, the weak coupling,
and capacity of the mean-field approximation) are not unique
to the two-dimensional case (although the numerical values
of parameters such as the rate of expansion of mixing zone
may depend on dimensionality [9]). Note that, unlike the
constant density case, two-dimensional (2D) Euler equation
with density variation does not conserve vorticity, i.e., den-
sity variation removes the main difference between 2D tur-
bulence (e.g., Chap. 10 in Ref. [26]) and three-dimensional
(3D) turbulence.

Closure of the set of equations (48) beyond the mean-field
approximation, requires the extension of the treatment to the
equation next to 60 (i.e., the n=2 equation). The application
of the weak-coupling approximation requires the cluster ex-
pansion [similar to Eq. (59)] to all f, appearing in the Aa
term. This derivation as well as the identification of the ap-
proximations necessary for closure are not straightforward
and are left for a future work.
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APPENDIX A: THE MOLECULAR VISCOSITY AND DIFFUSIVITY TERMS

In this appendix, the forms of the additional terms in the fine grain equation (39) due to molecular viscosity and diffusivity
are derived. The molecular viscosity term in the Navier-Stokes equation, _Vﬁril'a_ilul’ may be manipulated in the following

way [11]:
d J 1%
(sp) $3
- | —u | —[X;VF(u -V
(2 20). 2oson]
J J J
=y— - |lim, .1 — —[w,X* &, - v )
(9V1 ( r,—r| ‘91'2 (91‘2[ 24 ( 1 1)]
2
0 . d J s s
=v o 11ml.2Hrl<— — > J‘d3v2v2[X(2 28 (u, - V2)X(1 V& (a, - v,)] )
vy dry Jry | o
9 00| <
= Va_ . <1imr24,rl - E fd3V2V2F(lS1)(r1,V1,t)F(lxz)(r%Vz,t) ) (Al)
vy ary dry| o
Similar treatment to the diffusivity term in the mass conservation equation, D% : (.)r—a]X(l‘”), yields
J J Jd J
D{(— : —X&f“)@(u, —vl)} :D(nm, o) T XSS - vy)] )
ar; Jr, 271 dry dr,
2
J
=D nmrﬁrl(— 1 | @v, > X5 8, - v) XV Sy - v))] )
dry dr, 5=
J_ 9 3y f5) (2
=D llmr S R d V2F1 1 (rl,Vl,t)Fl 2 (rz,VZ,t) . (A2)
271 dry dr,

APPENDIX B: SOME DETAILS OF THE NUMERICAL
SCHEME AND CONVERGENCE TESTS

The numerical code LEEOR2D [29] is a two-dimensional
finite-difference ALE simulation which uses second-order
time integration. The very early stages of the simulation were
done in a mode close to Lagrangian, which subsequently
changed to Eulerian simulation to avoid Grid distortion.

Two different sets of convergence runs were performed to
determine the numerical requirement for the simulation of
the RTI evolution, including the self-similar regime. In the
figures below, the results of the two sets of convergence runs
are presented in terms of the time evolution of the bubbles
and spikes fronts. Those are defined as the coordinates at
which the y-averaged values of the volume fraction of the
light material is 0.04 and 0.96, respectively. The Atwood
number was 0.9.

The first convergence test examined the number of cells
required per wavelength for a given initial multimode pertur-

bation. Figure 9 presents the results showing that the simu-
lation with 8-16 cells per wavelength is reasonably con-
verged.

The second and more important convergence test ad-
dressed the question of statistics required for an adequate
simulation of the self-similar regime of RTI. In these runs,
the initial perturbation was changed with the resolution so
that in all runs, 8—16 cells per wavelength were used and the
average amplitude per wavelength was the same. Thus both
the wavelengths and the amplitudes decreased with the in-
creased resolution, resulting in a shortening of the transit
time to the self-similar regime. Figure 10 presents the nor-
malized width of the mixing zone for increasing resolution.
In the runs with higher resolution, the bubble front grows
linearly with g> with a proportion coefficient of ~0.04,
which is within the range of 0.035-0.05 cited in the literature
for 2D simulations (see Refs. 23, 25, 31, 35, 36, 38, and 39
in Ref. [9]).
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